
A massively parallel fluid solid interaction tool for biological flows

Motivation

Fluid flow coupled with deformable solid particles has

many applications in biological and engineering problems,

e.g., blood cell transport, drug delivery, blood clotting. We

present a partitioned approach to solve the coupled

Multiphysics problem. The fluid motion was solved by

PALABOS (parallel Lattice Boltzmann solver), while the

solid displacement and deformation was simulated by

LAMMPS (Large-scale Atomic/Molecular Massively

Parallel Simulator). The coupling was achieved through

the immersed boundary method. The code can model

both rigid and deformable solids. The code also showed

great scaling results over 8192 processors, highlighting the

capabilities of the code. Applications

Validations

Fig.5. The performance of the code over thousands of processors.

The system consists of 20,697,600 solid particles, 93,312,000 fluid

nodes. (a) The speed up. (b) The scaling efficiency.
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Fig. 6. The size and flexibility effect on the filaments transport in

blood cell suspensions was simulated. The transport of filaments

(green) mixing with red blood cells (red) in a cylindrical channel (R,L

= 15,50 μm). The snapshots of the simulation for (a) 2 μm filaments;

(b) 8 μm filaments; (c) The averaged the particle position in the

channel; (d) The mean square displacement of the particles.
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a. Ellipsoid orbit under shear flow 
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Solid: a=6, b=4.5

shear γ =0.0033

U=0.1, Height=60

b. Red blood cell: optical tweezer stretching test

Fig.2. Jeffery’s orbit for an ellipsoid under shear flow

Fig. 3. The comparison of simulation with experiments 

for red blood cell stretching

Performance

Filament transport in blood cell suspensions
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Methods

 Coupling: Immersed boundary method

Force and velocity continuous over the interface

 Fluid: Lattice Boltzmann method (PALABOS)

Dynamics of distribution functions

 Solid: cell membrane model (LAMMPS)

Stretching, Bending, Area/Volume conservation energy
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Fig. 1. The spreading of solid force into local fluid grids. 

The interpolation of solid velocity from local fluid velocity

𝐹𝑓𝑠𝑖 = ρ𝑓(𝑈𝑓 − 𝑈𝑠)/Δ𝑡Force coupling
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c. Blood effective viscosity in different tubes 

Fig. 4. The effective viscosity of blood flowing through 

different tube sizes.
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